Schwingungen

Klausur

Name	e: Datum:
Aufgaben:	
1.	Wie groß ist die Elongation einer Sinusschwingung, wenn die Amplitude 12cm und die Frequenz 15 Hz beträgt, a) 0,01 s , b) 0,02 s und c) 0,03 s nach dem Nulldurchgang.
2.	Welche Frequenzen haben die Sinusschwingungen der Amplitude y_{max} = 10cm, die erstmalig die Elongationen a) Y = 2cm, b) Y = 5cm und c) Y= 9cm 0,001s nach Durchgang durch die Nulllage erreichen?
3.	Wie viel Sekunden nach dem Nulldurchgang erreicht die Elongation einer Sinusschwingung von y_{max} = 2cm unf f = 50 Hz die Werte a) 1mm, b) 5mm und c) 15mm?
4.	Die Elongation einer Sinusschwingung von 15s Dauer und 10cm Amplitude verdoppelt sich innerhalb von 1s. Wie groß sind diese Elongationen?
5.	Wie viel Zeit verstreicht, bis die Elongation einer Sinusschwingung von $f = 54$ Hz und der Amplitude $y_{max} = 8$ cm von 3cm auf 7 cm anwächst?

Lösung:

1. Aufgabe:

- a) $y = y_{max} \sin 2 \pi f t \rightarrow 2 \pi f t = 6,28 = 15 = 0,01 = 0,9425 = 54^{\circ}$ y = 12cm = 0,8090 = 9,71 cm
- b) $2 \pi t = 108^{\circ} \rightarrow y = 11,41 \text{cm}$ c) y = 3,71 cm

2. Aufgabe :

- a) $y / y_{max} = \sin 2 \pi f t = 0.2 \implies 2 \pi f t = 11.5^{\circ} = 0.20071$ $f = \frac{0.20071}{2 \pi 0.001} = 31.9 \text{ Hz}$
- b) 83,3 Hz c) 178 Hz

3. Aufgabe:

a) $y / y_{max} = 1/20 = 0.5 = \sin 2 \pi f t \Rightarrow 2 \pi f t = 2.9^{\circ} = 0.05061$ $t = 161 \mu s$ b) $804 \mu s c$) 2.7 ms

4.Aufgabe :

$$\frac{\sin \omega (t_1 + t_{\Delta})}{\sin \omega t_1} = 2 \Rightarrow \cos \omega t_{\Delta} + \frac{\sin \omega t_{\Delta}}{\sin \omega t_1} = 2 \Rightarrow t_{\Delta} = 1s$$

$$ω = 0.4189 \text{ 1/s} \Rightarrow 0.9135 + \frac{0.4067}{\tan ω t_1} = 2$$

$$t_1 = 0.87 \text{ s} \implies t_2 = 1.87 \text{ s}$$

 $y_1 = 10 \sin 20.9^\circ = 3.6 \text{ cm} \implies y_2 = 7.1 \text{ cm}$

5.Aufgabe:

$$\sin \omega t_1 = 3/8 = 0.375 \implies \omega t_1 = 22^\circ = 0.3840$$

$$t_1 = \frac{0,3840}{2 \pi f} = 1,13 \text{ ms} \Rightarrow t_2 = 3,14 \text{ ms} \Rightarrow t_2 - t_1 = 2,01 \text{ ms}$$