

3. Bei einem Schülerversuch zur 2. Trafoformel sind folgende Werte gemessen worden:

\mathbf{n}_1	n ₂	I ₁ in mA	I ₂ in mA	falsch?
300	300	99	98	
300	600	100	47	
300	1200	100	50	
600	300	100	195	

In einer Messung hat sich ein grober Fehler eingeschlichen.

Kreuze die falsche Messung an und begründe durch Rechnung oder in Worten:

4. a.) Beschrifte die Einzelteile des Transformators:

- b.) Zeichne die für die erste Trafoformel benötigten Messgeräte in die Schaltung ein.
- c.) Erkläre die Aufgabe von

I) II)

- d.) Kann der Trafo auch mit Gleichspannung betreiben werden? Begründe!
- <u>5.</u> Beim Elektroschweißen sind sehr hohe Temperaturen nötig. Dies wird mit einem Hochstromtrafo erreicht.
- a.) Berechne I2, wenn

 $I_1 = 2,5A$

 $W_1 = 1000 \text{ Wdg}.$

 $W_2 = 5 \text{ Wdg}.$

b.) Wie sehen die Windungen der

Sekundärspule aus?

Begründe ihr Aussehen!

<u>6.</u>	Die Netzspannung soll mit einem Lam transformiert werden. Die Primärspule				
	a.) Berechne W ₂ !	b.) Im Primärkreis fließen 5mA. Berechne I ₂ !			
<u>7.</u>	Ein Hochspannungstrafo mit $W_1 = 600$ hoch transformieren. Berechne die Wi	Wdg. soll die Netzspannung auf 9200V ndungszahl der Sekundärspule!			
8	Die Generatoren eines Elektrizitätswei	kes stellen hei der Spannung II. – 10kV			
<u>o.</u>	Die Generatoren eines Elektrizitätswerkes stellen bei der Spannung $U_1 = 10kV$ die elektrische Leistung $P = 6$ MW zur Verfügung.				
	Mit einem Trafo wird die Spannung au Es wird angenommen, dass der Trafo				
	a.) Berechne die Stromstärken I ₁ und				
	b.) Erkläre, warum man die Spannung	so hoch transformiert.			
Vie	l Erfolg!!!				

1. a.) Erkläre wie ein Generator Strom erzeugt.

Wechselndes Magnetfeld in einer Spule

b.) Welche Stromart erzeugt er?

Wechselstrom

c.) Welche Energieumwandlung findet statt?

Bewegungsenergie → elektrischer Energie

<u>2.</u> Ein Elektromagnet und eine Spule stehen direkt nebeneinander.

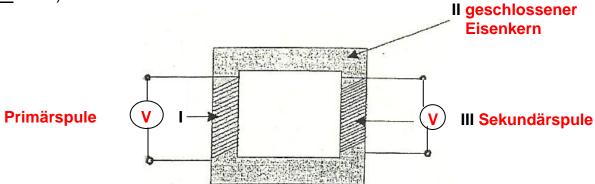
Die Spule ist an ein empfindliches Amperemeter angeschlossen.

Entscheide jeweils was an dem Amperemeter zu sehen ist (Strom, ja / nein ?) und begründe deine Antwort!

- a.) Der Strom für den Elektromagneten wird eingeschaltet.
- → Ja, es baut sich ein Magnetfeld auf, dadurch fließt Strom
- b.) Durch den Elektromagnet fließt ein konstanter Gleichstrom.
- → Nein, kein elektrisches Magnetfeld, kein Strom
- c.) Bei konstantem Gleichstrom wird der Eisenkern aus dem Elektromagnete herausgezogen
- → Ja, Magnetfeld wird verstärkt und ändert sich, somit fließt Strom
- 3. Bei einem Schülerversuch zur 2. Trafoformel sind folgende Werte gemessen worden:

\mathbf{n}_1	n_2	I ₁ in mA	I ₂ in mA	falsch?
300	300	99	98	
300	600	100	47	
300	1200	100	50	X
600	300	100	195	

In einer Messung hat sich ein grober Fehler eingeschlichen.


Kreuze die falsche Messung an und begründe durch Rechnung oder in Worten:

$$\boldsymbol{I_1} \bullet \boldsymbol{W_1} = \boldsymbol{I_2} \bullet \boldsymbol{W_2}$$

 $30000 \neq 60000$

→ Falsch

4. a.) Beschrifte die Einzelteile des Transformators:

- b.) Zeichne die für die erste Trafoformel benötigten Messgeräte in die Schaltung ein.
- c.) Erkläre die Aufgabe von
- I) erzeugt ein ständig wechselndes Magnetfeld
- II) verstärkt das Magnetfeld und leitet es in die Sekundärspule
- III)Spannung wird induziert
- d.) Kann der Trafo auch mit Gleichspannung betreiben werden? Begründe! Nein, da sich kein wechselndes Magnetfeld aufbauen kann.
- <u>5.</u> Beim Elektroschweißen sind sehr hohe Temperaturen nötig. Dies wird mit einem Hochstromtrafo erreicht.
- a.) Berechne I₂, wenn

 $I_1 = 2,5A$

 $W_1 = 1000 \text{ Wdg.}$

 $W_2 = 5 \text{ Wdg}.$

 \rightarrow $I_2 = 500A$

Formel: $I_1 \bullet W_1 \rightrightarrows_2 \bullet W_2$

b.) Wie sehen die Windungen der Sekundärspule aus?Begründe ihr Aussehen!

begrunde ini Aussenen:

Sehr dick, hoher Widerstand,

dürfen nicht schmelzen bei hohen

Temperaturen!!!

6. Die Netzspannung soll mit einem Lampentrafo auf maximal 12V herunter transformiert werden. Die Primärspule hat 500 Windungen.

→
$$W_2 = 26 \text{ Wdg.}$$

Formel:
$$\frac{U_1}{U_2} = \frac{W_1}{W_2}$$

→
$$I_2 = 0.1A$$

Formel:
$$I_1 \bullet W_1 = I_2 \bullet W_2$$

 $\underline{7.}$ Ein Hochspannungstrafo mit W₁ = 600 Wdg. soll die Netzspannung auf 9200V hoch transformieren. Berechne die Windungszahl der Sekundärspule!

→
$$W_2 = 24000 \text{ Wdg.}$$

Formel:
$$\frac{U_1}{U_2} = \frac{W_1}{W_2}$$

8. Die Generatoren eines Elektrizitätswerkes stellen bei der Spannung $U_1 = 10kV$ die elektrische Leistung P = 6 MW zur Verfügung.

Mit einem Trafo wird die Spannung auf 360 kV hochtransformiert.

Es wird angenommen, dass der Trafo nahezu verlustfrei arbeitet.

a.) Berechne die Stromstärken I₁ und I₂!

$$I_2 = 16,6A$$

Formel:
$$I = \frac{P}{U}$$

b.) Erkläre, warum man die Spannung so hoch transformiert.

Bei gleicher Leistung kann weniger Strom fließen.

Viel Erfolg!!!