1. Aufgaben gesucht!

Es wird jeweils eine Gleichung vorgegeben. Formuliere eine Aufgabe, welche durch diesen Ansatz gelöst werden kann. (Es werden die üblichen Symbole verwendet.)

a)
$$mgh = \frac{1}{2}mv^2$$

b)
$$\frac{1}{2}Ds^2 = mgh$$

2. Temposünder

Bei einem Verkehrsunfall in einer geschlossnen Ortschaft stellt die Polizei bei einem Pkw einen Bremsweg von 19,0 m fest. Die Reibungszahl des Reifenmaterials auf dem Straßenbelag wird zu $\mu=0,75$ ermittelt. Mit welcher Geschwindigkeit war der Autofahrer wohl unterwegs?

3. Stadtverkehr

Erläutere unter Verwendung der Fachsprache: "Pkws verbrauchen im Stadtverkehr wesentlich mehr Treibstoff als bei Überlandfahrten (bei gleicher Geschwindigkeit)."

4. Energiekosten-Vergleich:

Elektrischer Strom kostet derzeit 15,85 Ct pro kW h, Erdgas liegt bei 6,392 Ct pro kW h. Bei Heizöl kann man einen einen Heizwert von 11,9 $\frac{kW\,h}{kg}$ nachlesen. Seine Dichte beträgt 0,86 $\frac{g}{cm^3}$. Der derzeitige Preis beträgt 62,1 Ct pro Liter.

Berechne den Preis von Heizöl pro kW h.

5. Hochhaus

Der Lift des Olympiaturms in München befördert eine Last von $800\,\mathrm{kg}$ innerhalb $30\,\mathrm{s}$ in eine Höhe von $190\,\mathrm{m}$.

- a) Welche Leistung ist dazu erforderlich? (Ersatzwert: 49 kW)
- b) Welche Leistungsaufnahme hat der Motor, wenn der Wirkungsgrad der Anlage 80% beträgt?

6. Luftwiderstand eines Pkw

Ein Pkw fährt auf der Autobahn mit $160\frac{\mathrm{km}}{\mathrm{h}}$. Der Motor leistet dabei 75 kW. Berechne daraus die Gesamtreibungskraft auf den Pkw (Hauptsächlich Luftwiderstand).

Viel Erfolg!

- 1. a) Eine Masse m wird aus einer Höhe h fallen gelassen. Mit welcher Geschwindigkeit v trifft sie auf dem Boden auf?
 - b) Eine Feder der Härte D wird um s gestaucht und katapultiert so eine Masse m nach oben. In welcher Höhe h kehrt die Masse um?
- 2. geg: $s = 19,0 \,\mathrm{m}, \quad \mu = 0,75$

Kinetische Energie ist gleich der Reibungsarbeit:

$$\frac{1}{2}mv^2 = \mu mgs$$

$$v = \sqrt{2\mu gs} = \sqrt{2 \cdot 0,75 \cdot 9,81 \frac{m}{s^2} \cdot 19,0 m} = 17 \frac{m}{s} = 60 \frac{km}{h}$$

- 3. In der Stadt müssen die Fahrzeuge häufig abbremsen und wieder anfahren. Bei jedem Anfahren ist zusätzliche Beschleunigungsarbeit notwendig, beim Bremsen wird dagegen keine Energie aufgenommen. Deshalb ist der Treibstoffverbrauch höher.
- 4. geg: Heizöl: $11, 9 \frac{\text{kW h}}{\text{kg}}$, $0, 86 \frac{\text{g}}{\text{cm}^3} = 0, 86 \frac{\text{kg}}{\ell}$, 62, 1 Ct pro Liter $62, 1 \text{ Ct} \quad \widehat{=} \quad 1\ell$ $62, 1 \text{ Ct} \quad \widehat{=} \quad 0, 86 \text{ kg} \quad |: 0, 86$ $72, 2 \text{ Ct} \quad \widehat{=} \quad 1 \text{ kg}$ $72, 2 \text{ Ct} \quad \widehat{=} \quad 11, 9 \text{ kW h} \quad |: 11, 9$ $6, 1 \text{ Ct} \quad \widehat{=} \quad 1 \text{ kW h}$

Alternativ:

Energieinhalt pro kg:
$$11,9 \frac{\text{kW h}}{\text{kg}}$$
Masse pro kW h:
$$\frac{1}{11,9} \frac{\text{kg}}{\text{kW h}}$$
Dichte:
$$0.86 \frac{\text{g}}{\text{mass}} = 0.88$$

Dichte:
$$0.86 \frac{g}{cm^3} = 0.86 \frac{kg}{\ell}$$
 Liter pro kg:
$$\frac{1}{0.86} \frac{\ell}{kg}$$

Liter pro kW h:
$$\frac{1}{0,86} \frac{\ell}{\text{kg}} \cdot \frac{1}{11,9} \frac{\text{kg}}{\text{kW h}} = \frac{1}{0,86 \cdot 11,9} \frac{\ell}{\text{kW h}}$$

Preis pro kWh:

$$62, 1\frac{Ct}{\ell} \cdot \frac{1}{0,86 \cdot 11, 9} \frac{\ell}{kW \, h} = \frac{62, 1}{0,86 \cdot 11, 9} \frac{Ct}{kW \, h} = 6,07 \frac{Ct}{kW \, h}$$

1. Schulaufgabe aus der Physik Musterlösung

5. geg:
$$m = 800 \,\mathrm{kg}$$
, $t = 30 \,\mathrm{s}$, $h = 190 \,\mathrm{m}$, $\mu = 0.80 \,\mathrm{m}$

a) Hubarbeit:

$$W = mgh$$

= 800 kg ·9, 81 $\frac{\text{m}}{\text{s}^2}$ · 190 m = 1, 491 1 · 10⁶ J

Erforderliche Leistung:

$$P = \frac{W}{t} = \frac{1,4911 \cdot 10^6 \,\text{J}}{30 \,\text{s}} = 49703 \,\text{W} = 49 \,\text{kW}$$

b) Leistungsaufnahme:

$$P_{\text{auf}} = \frac{P}{\mu} = \frac{49 \,\text{kW}}{0,80} = 61 \,\text{kW}$$

6. geg:
$$v = 160 \frac{\text{km}}{\text{h}} = 44, 4 \frac{\text{m}}{\text{s}}, P = 75 \text{ kW}$$

Lesitung:

$$P = \frac{W}{t} = \frac{F \cdot s}{t} = F \cdot v$$
$$F = \frac{P}{v} = \frac{75000 \,\mathrm{W}}{44, 4\frac{\mathrm{m}}{\mathrm{s}}} \approx 1700 \,\mathrm{N}$$