A.1: Die Lösungsmenge der kubischen Gleichung $x^3 = a$ erhält man folgendermaßen:

A.2: Die Lösungsmenge L der Gleichung $x^n = a$ ist:

A.3: Bestimme die Lösungsmenge:

a.)
$$x^3 = 64$$
 b.) $x^4 = -81$ c.) $x^5 = -243$ d.) $x^6 = 20$

b.)
$$x^4 = -81$$

c.)
$$x^5 = -243$$

d.)
$$x^6 = 20$$

A.4: Berechne bzw. vereinfache so weit wie möglich:

1)
$$\left(\frac{1}{4}\right)^{\frac{7}{6}} \cdot \left(\frac{1}{4}\right)^{-\frac{2}{3}}$$

2)
$$a^{\frac{3}{5}}: a^{-\frac{1}{4}}$$

3)
$$\left(25^{\frac{1}{4}}\right)^6$$

4)
$$\left(x^{-\frac{3}{7}}\right)^{-\frac{7}{9}}$$

6)
$$\sqrt{x}$$
: $\sqrt[3]{x^2}$ (Ergebnis als Wurzel angeben)

7)
$$(\sqrt[r]{a})^4 \cdot \sqrt[r]{a^{-3}}$$
 (Ergebnis als Wurzel angeben)

A.1: Die Lösungsmenge der kubischen Gleichung $x^3 = a$ erhält man folgendermaßen:

Falls a>0
$$x = \sqrt[5]{a}$$

Falls a=0 $x = \sqrt[5]{0} = 0$
Falls a<0 $x = -\sqrt[5]{|a|}$

A.2: Die Lösungsmenge L der Gleichung $x^n = a$ ist

Wenn n gerade ist:

Falls a>0
$$L = \{\sqrt[n]{a}; -\sqrt[n]{|a|}\}$$
 Falls a=0
$$L = \{0\}$$
 Falls a<0
$$L = \{\}$$

Wenn n ungerade ist:

Falls a>0
$$L = {\sqrt[n]{a}}$$
 Falls a=0
$$L = {0}$$
 Falls a<0
$$L = {-\sqrt[n]{|a|}}$$

A.3: Bestimme die Lösungsmenge:

a.)
$$x^3 = 64 \leftrightarrow x = \sqrt[5]{64} = 4$$
 L = {4}
b.) $x^4 = -81$ L = { }
c.) $x^5 = -243 \leftrightarrow x = -\sqrt[5]{|243|} = -3 \text{ L} = \{-3\}$
d.) $x^6 = 20 \leftrightarrow x = +\sqrt[6]{20} = +1.65$ L = {1.65:-1.65}

A.4: Berechne bzw. vereinfache so weit wie möglich:

1)
$$\left(\frac{1}{4}\right)^{\frac{7}{6}} \cdot \left(\frac{1}{4}\right)^{-\frac{2}{3}} = \left(\frac{1}{4}\right)^{\frac{7}{6} + \left(-\frac{2}{3}\right)} = \left(\frac{1}{4}\right)^{\frac{1}{2}} = \frac{1}{2}$$

2)
$$a^{\frac{3}{5}} : a^{-\frac{1}{4}} = a^{\frac{3}{5} - \left(-\frac{1}{4}\right)} = a^{\frac{17}{20}}$$

3)
$$\left(25^{\frac{1}{4}}\right)^6 = 25^{\frac{1}{4}.6} = 125$$

4)
$$\left(x^{-\frac{3}{7}}\right)^{-\frac{7}{9}} = x^{-\frac{3}{7}\cdot\left(-\frac{7}{9}\right)} = x^{\frac{1}{3}}$$

5)
$$\sqrt[5]{8} \cdot \sqrt[5]{4} = \sqrt[5]{8 \cdot 4} = \sqrt[5]{32} = 2$$

6)
$$\sqrt{x}$$
: $\sqrt[3]{x^2} = \sqrt[3]{x^3}$: $\sqrt[3]{x^2} = \sqrt[3]{\frac{x^3}{x^2}} = \sqrt[3]{x^{3-2}} = \sqrt[3]{x}$

7)
$$(\sqrt[r]{a})^4 \cdot \sqrt[r]{a^{-3}} = \sqrt[r]{a^4} \cdot \sqrt[r]{a^{-3}} = \sqrt[r]{a^4 \cdot a^{-3}} = \sqrt[r]{a}$$