
Potenzfunktion

Die Funktionsgleichung einer Potenzfunktion hat die Form $y = 3 x^4$.

Die Funktionswerte der Potenzfunktion mit geraden Hochzahlen haben immer dasselbe Vorzeichen, die Funktionswerte der Potenzfunktion mit ungeraden Hochzahlen wechseln das Vorzeichen bei x = 0

Man nennt $x \rightarrow y$ mit Funktionsgleichungen der Form $y = -3x^3$; $y = \sqrt{5}x^4$ oder $y = -0.23x^5$ **Potenz-funktionen 3. bzw. 4. bzw. 5. Grades**

Eigenschaften der Potenzfunktionen

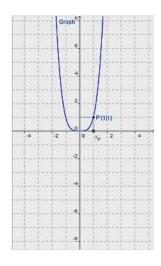
Für jede Potenzfunktion gilt y(0) = 0; der Graph geht durch den Punkt S(0|0).

1. Ordne dem Graphen der Potenzfunktion die richtige Gleichung zu!

$$\square$$
 y = x⁻¹

$$\Box$$
 y = -x⁻¹

$$\Box$$
 y = x³


$$\Box$$
 y = 3x³

$$\Box$$
 y = -x⁻²

$$\Box$$
 y = x⁻²

$$\Box$$
 y = x⁴

$$\Box$$
 y = 0,5x⁻²

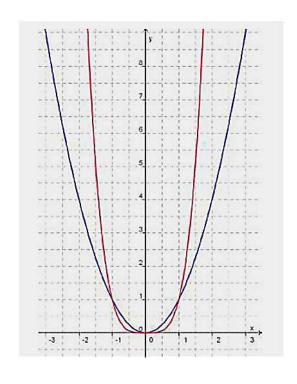
2. Berechne zuerst die Funktionswerte. dann lässt sich der Graph leichter zeichnen

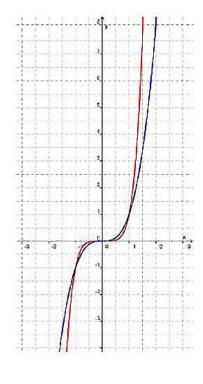
х	0	$\frac{1}{2}$	1	2
a) $y = x^2$				
b) $y = 0.5x^2$				
c) $y = x^3$				
d) $y = -x^3$				

3. Der Graph der Funktion $y = 3x^3 - 2$ wird mit dem Vektor (1; 2) verschoben. Wie lautet die neue Funktionsgleichung?

1. Bei positiven Exponenten handelt es sich um eine _____ Bei positivem, geradem Exponenten liegt ein ______2 Graph vor.

Kreuze die richtige Lösung an.


- ☐ Parabel₁, punktsymmetrische₂
- ☐ Parabel₁, achsensymmetrische oder punktsmmetrische₂
- ☐ Parabel₁, achsensymmetrisch₂
- 2. Die Punkte liegen auf dem Graphen der Funktion mit $y = \frac{1}{3}x^3$. Bestimme die fehlende Koordinate.
 - P(6|__)
- Q(-2|__)
- $R(\underline{\ \ \ }|_{\frac{1}{3}}^{\frac{1}{3}})$
- S(__|9)
- 3. Gib eine Funktionsgleichung einer Potenzfunktion an, die zu der Aussage passt.
 - a) Der dazugehörige Graph ist symmetrisch zur y-Achse
 - b) Der dazugehörige Graph geht durch den Punkt P(1|3)
 - c) Die dazugehörigen Funktionswerte sind alle positiv oder null
 - d) Verdoppelt man den x-Wert, so verachtfacht sich der dazugehörige y-Wert
- 4. Ordne die untenstehenden Graphen den Funktionen zu.


$$f_1$$
 mit $y = x^2$

$$f_2$$
 mit $y = x^3$

$$f_3$$
 mit $y = x^4$

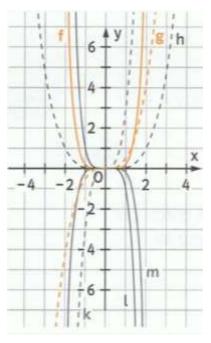
$$f_4$$
 mit $y = x^5$

1. Beschreibe die Eigenschaften des Graphen der Funktion:

$$f(x) = -2.5 (x + 4)^{-7} - 10$$

- ☐ der Graph ist um 10 Einheiten nach unten verschoben
- ☐ die Parabel ist um den Faktor 2,5 gestaucht
- ☐ die Parabel ist an der x-Achse gespiegelt
- ☐ der Graph ist punktsymmetrisch
- ☐ der Graph ist um den Faktor 2,5 gestreckt und um 4 nach links verschoben
- ☐ der Graph besteht aus 2 Teilen
- 2. Notiere zur Funktionsgleichung den Buchstaben des zugehörigen Graphen.

a)
$$y = 0.2x^6$$


b)
$$y = \frac{1}{2}x^3$$

c)
$$y = -x^5$$

d)
$$y = 3x^3$$

e)
$$y = \frac{1}{16}x^4$$

f)
$$Y = -0.2x^6$$

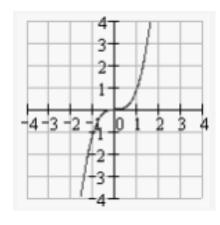
- 3a. Bestimme drei Punkte, die auf dem Graphen der Potenzfunktion mit $y=-\frac{1}{2}x^4$ liegen.
- b. Die Punkte P, Q, R und S liegen auf dem Graphen der Potenzfunktion mit y = $2x^5$. Bestimme jeweils die fehlende Koordinate.

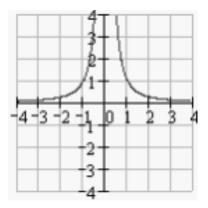
4. Wie ändert sich der Funktionswert, wenn man den x-Wert verdoppelt?

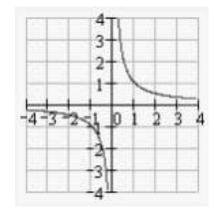
a)
$$y = 4x^4$$

b)
$$y = 5x^2$$

c)
$$y = 1.5x^3$$


d)
$$y = \frac{3}{5}x^5$$


1. Welcher Graph gehört zur welcher Funktionsgleichung?


$$y = x^{-2}$$

$$y = x^3$$

$$y = x^{-1}$$

2. Die Funktionen f, g und h haben die Funktionsgleichungen

$$f: y = 4x^3$$

$$q: y = x^5$$

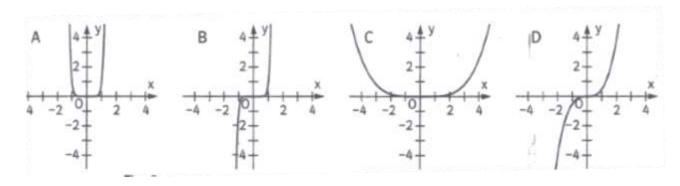
h:
$$y = 0.1x^4$$

Bestimme die x-Werte, für die gilt:

a) Die Funktionswerte von g und h sind gleich groß.

b) Die Funktionswerte von h sind kleiner als die von f.

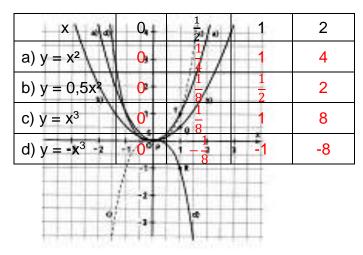
c) Die Funktionswerte von f sind größer als die von g.


3. Ordne die Funktionsgleichungen den Graphen zu.

a)
$$y = 0.01^4$$

b)
$$y = 0.5x^3$$

c)
$$y = 0.1x^5$$


c)
$$y = 0.1x^5$$
 d) $y = -\frac{1}{4}x^3$

1. Ordne dem Graphen der Potenzfunktion

die richtige Gleichung zu!

- \square y = X^{-1}
- \square y = -x⁻¹
- \square y = x^3
- \Box y = 3x³ \square y = x⁻²
- \Box y = -x⁻² $\bigvee y = x^4$
- \Box y = 0.5x⁻²
- 2. Berechne zuerst die Funktionswerte, dann lässt sich der Graph leichter zeichnen

3. Der Graph der Funktion y = $3x^3$ - 2 wird mit dem Vektor (1; 2) verschoben.

Wie lautet die neue Funktionsgleichung?

Verschiebung von Schaubildern

Man verschiebt das Schaubild von y = f(x) um x_0 in x-Richtung und y_0 in y-Richtung, indem man in der Funktionsgleichung x durch $x - x_0$ und y durch $y - y_0$ ersetzt. Das verschobene Schaubild hat dann die Gleichung $y - y_0 = f(x - x_0)$ bzw. $y = f(x - x_0) + y_0$.

$$y = 3 (x - 1)^3 - 2 + 2$$

$$y = 3(x - 1)^3$$

Potenz Funktionen Lösungen 2

1. Bei positiven Exponenten handelt es sich um eine Parabel_{1.}

Bei positivem, geradem Exponenten liegt ein achsensymmetrischer? Graph vor.

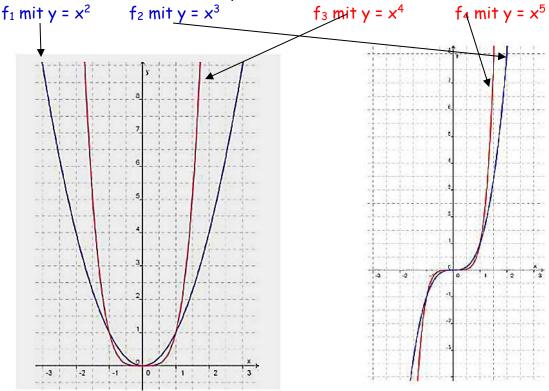
Kreuze die richtige Lösung an.

- ☐ Parabel₁, punktsymmetrische₂
- ☐ Parabel₁, achsensymmetrische oder punktsmmetrische₂
- □ Parabel₁, achsensymmetrisch₂
- 2. Die Punkte liegen auf dem Graphen der Funktion mit $y = \frac{1}{2}x^3$.

Bestimme die fehlende Koordinate.

Der x-Wert wird in die Funktionsgleichung eingesetzt.

P(6|72):


$$y = \frac{1}{2}6^3$$

$$y = \frac{6 \cdot 6 \cdot 6}{3}$$

$$y = \frac{1}{3}6^3$$
 $y = \frac{6 \cdot 6 \cdot 6}{3}$ $y = 36 \cdot 2$ $y = 72$

Q(-2|
$$-\frac{8}{3}$$
): $y = \frac{1}{3}(-2)^3$ $y = \frac{1}{3} \cdot (-8)$ $y = -\frac{8}{3}$
R(1| $\frac{1}{3}$): $\frac{1}{3} = \frac{1}{3}x^3$ $x = 1$
S(3|9): $9 = \frac{1}{3}x^3$ $x^3 = 9 \cdot 3$ $x = \sqrt[3]{27}$ $x = 3$

- 3. Gib eine Funktionsgleichung einer Potenzfunktion an, die zu der Aussage passt.
 - a) Der dazugehörige Graph ist symmetrisch zur y-Achse Z.B. $y = -3x^4$ jede Potenzfunktion geraden Grades
 - b) Der dazugehörige Graph geht durch den Punkt P(1|3) z.B. $y = 3x^3$ jede Potenzfunktion mit 3 als Faktor vor dem x
 - c) Die dazugehörigen Funktionswerte sind alle positiv oder null z.B. $y = 5x^4$ jede Potenzfunktion gerader Hochzahl und positiven Faktor vor dem x
 - d) Verdoppelt man den x-Wert, so verachtfacht sich der dazugehörige y-Wert z.B. $y = 3x^3$ jede Potenzfunktion dritten Grades
- 4. Ordne die untenstehenden Graphen den Funktionen zu.

Potenz Funktionen Lösungen 3

1. Beschreibe die Eigenschaften des Graphen der Funktion:

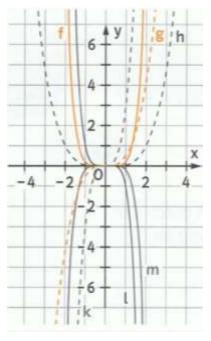
 $f(x) = -2.5 (x + 4)^{-7} - 10$

- ☑ der Graph ist um 10 Einheiten nach unten verschoben
- $\hfill \Box$ die Parabel ist um den Faktor 2,5 gestaucht
- ☐ die Parabel ist an der x-Achse gespiegelt
- der Graph ist punktsymmetrisch
- der Graph ist um den Faktor 2,5 gestreckt und um 4 nach links verschoben

www.Klassenarbeiten.de

2. Notiere zur Funktionsgleichung den Buchstaben des zugehörigen Graphen.

a)
$$y = 0.2x^6$$


b)
$$y = \frac{1}{2}x^3$$

c)
$$y = -x^5$$

d)
$$y = 3x^3$$
 k

e)
$$y = \frac{1}{16}x^4$$

f)
$$Y = -0.2x^6$$
 m

3a. Bestimme drei Punkte, die auf dem Graphen der Potenzfunktion mit y = $-\frac{1}{2}x^4$ liegen.

individuell, z.B. (0|0);
$$(1|-\frac{1}{2})$$
; $(2|-8)$; $(-1|-\frac{1}{2})$; $(-2|-8)$;

b. Die Punkte P, Q, R und S liegen auf dem Graphen der Potenzfunktion mit $y = 2x^5$. Bestimme jeweils die fehlende Koordinate.

$$y = 2 \cdot 2^5 = 2^6 = 64$$

$$y = 2 \cdot (-1)^5 = 2 \cdot (-1) = -2$$

$$y = 2 \cdot (0,1)^5 = 2 \cdot 0,00001 = 0,00002$$

$$-64 = 2 \cdot x^5 \mid : (-2)$$

$$32 = -x^5$$

$$x = -\sqrt[5]{32} => x = -2$$

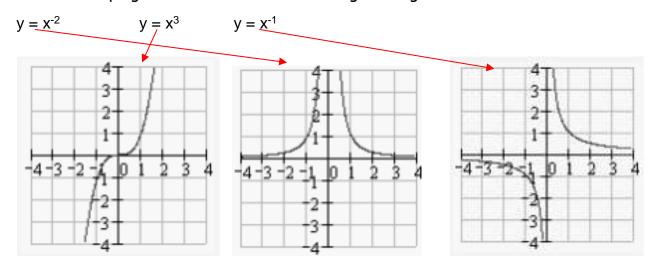
4. Wie ändert sich der Funktionswert, wenn man den x-Wert verdoppelt?

a)
$$y = 4x^4$$
 Rechnung: $y = 4 \cdot (2x)^4 = 4 \cdot 2^4 \cdot x^4 = 16 \cdot 4x^4$

Die Funktionswerte versechszehnfachen sich

b)
$$y = 5x^2$$
 Rechnung: $y = 5(2x)^2 = 5 \cdot 2^2 \cdot x^2 = 4 \cdot 5x^2$

Die Funktionswerte vervierfachen sich


c)
$$y = 1.5x^3$$
 Rechnung: $y = 1.5 (2x)^3 = 1.5 \cdot 2^3 \cdot x^3 = 8 \cdot 1.5 x^3$

Die Funktionswerte vereinfachen sich

d)
$$y = \frac{3}{5}x^5$$
 Rechnung: $y = \frac{3}{5}(2x)^5 = \frac{3}{5}2^5x^5 = 32 \cdot \frac{3}{5}x^5$

Die Funktionswerte verzweiunddreißigfachen sich

1. Welcher Graph gehört zur welcher Funktionsgleichung?

2. Die Funktionen f, g und h haben die Funktionsgleichungen

$$f: y = 4x^3$$

$$q: y = x^5$$

h:
$$y = 0.1x^4$$

Bestimme die x-Werte, für die gilt:

a) Die Funktionswerte von g und h sind gleich groß

$$f(x) = g(x) =>$$

$$x^5 = 0.1x^4$$

 $x = 0.1$

Für x = 0.1 sind die Funktionswerte von g und h gleich groß.

b) Die Funktionswerte von h sind kleiner als die von f

$$h(x) < f(x) =>$$

$$0.1x^4 < 4x^3 \mid : x^3$$

Für 0 < x < 40 und x < 0 sind die Funktionswerte von h kleiner als die von f.

c) Die Funktionswerte von f sind größer als die von g

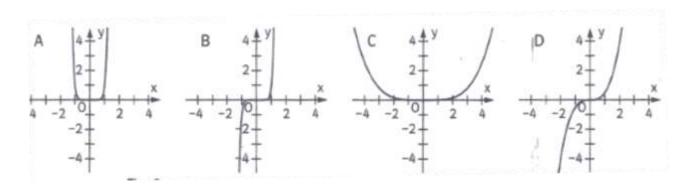
$$f(x) > g(x) =>$$

$$4x^3 > x^5$$

$$4 > x^2$$

$$x < \pm 2$$

Für 0 < x < 2 und für x < -2 sind die Funktionswerte von f größer als die von g.


3. Ordne die Funktionsgleichungen den Graphen zu.

a)
$$y = 0.01^4 C$$

b)
$$y = 0.5x^3 D$$

c)
$$y = 0.1x^5$$
 B

c)
$$y = 0.1x^5 B$$
 d) $y = -\frac{1}{4}x^3 A$

