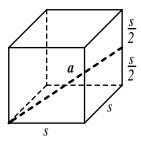
4. Schulaufgabe aus der Mathematik


Gruppe A

1. Gegeben ist das Gleichungssystem

$$1, 2x - 0, 8y = 3, 2$$
$$2x + 4y = 16 \quad ,$$

ferner die Punkte A(-3|5) und B(7|-4).

- a) Zeichne die Gerade g=AB in ein Koordinatensystem. Stelle die Funktionsgleichung der Geraden g auf.
- b) Löse das Gleichungssystem im Koordinatensystem aus a) graphisch.
- c) Löse das Gleichungssystem mit einem rechnerischen Verfahren.
- 2. Der Würfel in der Skizze unten habe die Kantenlänge $s=4\,\mathrm{cm}$. Konstruiere die in den Würfel eingezeichnete Strecke a in wahrer Größe.

3. Ein geradliniger, im Querschnitt trapezförmiger Deich hat eine Länge von $l=4\,\mathrm{km}$. An der Basis ist der Deich $a=15\,\mathrm{m}$, oben auf der Deichkrone $b=3\,\mathrm{m}$ breit. Seine Höhe beträgt $h=5\,\mathrm{m}$.

Berechne das Volumen des Deiches.

4. Konstruiere ein Sehnenviereck, dessen Diagonalen beide die Länge $e=f=7\,\mathrm{cm}$ haben. Außerdem soll eine Seite die Länge $a=5\,\mathrm{cm}$ haben, und der an a anliegende Innenwinkel $\alpha=120^\circ$ sein. (Winkel dürfen gezeichnet werden.)

Gib eine Konstruktionsbeschreibung in Kurzform!

Viel Erfolg!

4. Schulaufgabe aus der Mathematik

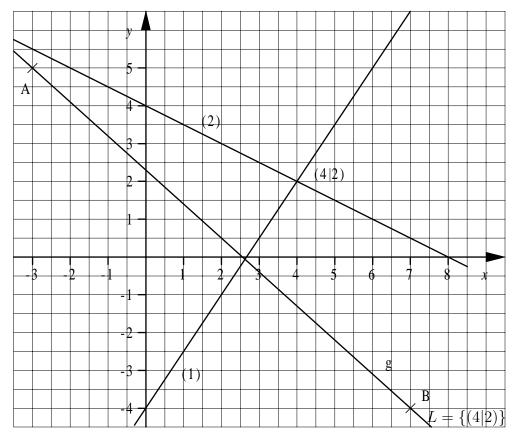
Gruppe A

- Musterlösung -

1.
$$1,2x - 0,8y = 3,2 \tag{1}$$

$$2x + 4y = 16\tag{2}$$

a)
$$g(x) = \frac{-4-5}{7+3}(x+3) + 5 = -\frac{9}{10}x + \frac{23}{10} = -0,9x+2,3$$


b) Löse beide Gleichungen nach y auf:

$$0,8y = 1,2x - 3,2$$

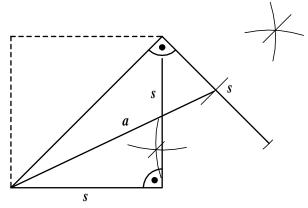
$$y = \frac{1,2x - 3,2}{0,8} = \frac{3}{2}x - 4$$
(1')

$$4y = -2x + 16$$

$$y = -\frac{1}{2}x + 4 \tag{2'}$$

c) Setze (1') in (2) ein:

$$2x + 4\left(\frac{3}{2}x - 4\right) = 16$$
$$2x + 6x - 16 = 16$$
$$8x = 32$$
$$x = 4$$


In (1'):

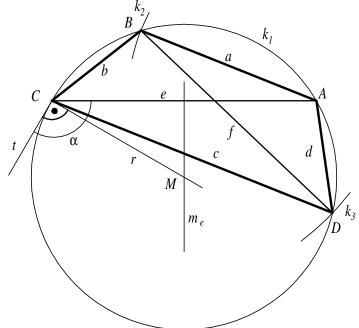
$$y = \frac{3}{2} \cdot 4 - 4 = 2$$
 $L = \{(4|2)\}$

4. Schulaufgabe aus der Mathematik

Gruppe A – Musterlösung –

2.

 $(a = 6, 0 \, \text{cm})$


3. Trapezfläche:

$$A = \frac{a+b}{2} \cdot h = \frac{15 \text{ m} + 3 \text{ m}}{2} \cdot 5 \text{ m} = 45 \text{ m}^2$$

Volumen des geraden Prismas der Grundfläche A und Höhe l:

$$V = A \cdot l = 45 \,\mathrm{m}^2 \cdot 4\,000 \,\mathrm{m}$$

= $180\,000 \,\mathrm{m}^3$

4.

Strecke e, Fasskreis k_1 zu α über e, $k_2(A;a)$, Strecken a,b, $k_3(B;f)$, Strecken f,d,c.