Lerne die Winkel und die Gradzahl auswendig – du brauchst sie!

Spitzer Winkel (kleiner als 90°)	Stumpfer Winkel (zwischen 90° und 180°)	Überstumpfer Winkel (zwischen 180° und 360°)
Rechter Winkel (90°)	Gestreckter Winkel (180°)	Voller Winkel (360°)

Winkel werden mit griechischen Buchstaben bezeichnet. Schreibe die griechischen Buchstaben zehnmal und lerne, wie sie heißen.

alpha $\alpha \alpha \alpha$	α
gamma γγγ	β
beta βββ	Υ
delta δδδ	δ

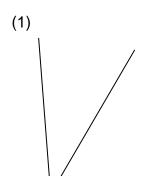
www.Klassenarbeiten.de

Rechne auf einem Extrablatt!

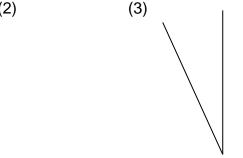
- 1. Winkel:
 - a) Konstruiere folgenden Winkel und gib die Art des Winkels an: $\alpha = 30^{\circ}$
 - b) Zeichne folgenden Winkel und gib die Art des Winkels an: $\alpha = 247^{\circ}$
- **2. Gegeben ist** der Winkel $\alpha = 65^{\circ} 45' 16''$. Der Winkel β ist doppelt so groß wie α ; y ist ein Viertel von α.
 - a) Wie groß sind β und γ ?
 - b) Ermittle die Summe der drei Winkel!
- 3. Umwandlungen:

a) Schreibe mehrnamig: 23,56° b) Verwandle in Grad: 42.732"

- **4. Berechne den Winkel** α wenn $\beta = 123,7^{\circ}$ und $\gamma = 100,5^{\circ}$ haben
- 5a) Zeichne Winkel folgender Größen:


(1)
$$\alpha = 48^{\circ}$$
;

(2)
$$\beta$$
 = 220 °


$$(3) v = 0^{\circ}$$

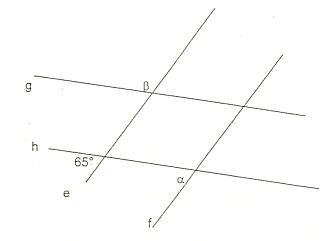
(3)
$$y = 0^{\circ}$$
 (4) $\delta = 360^{\circ}$

b) Miss die Größen folgender Winkel:

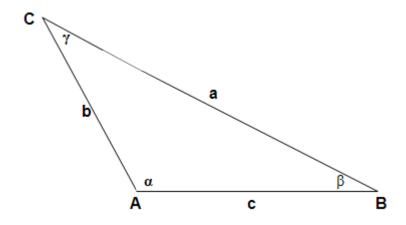
(2)

(4)

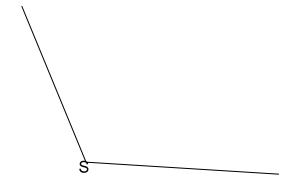
6. Welchen Winkel schließen die Zeiger der Uhr ein? Welche Art von Winkel ist dargestellt?

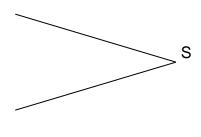

1. Berechne die Winkel α und β in der untenstehenden Skizze:

$$g \parallel h$$

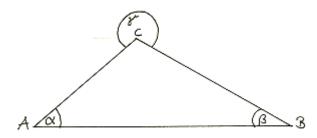

$$e \, || \, f$$

$$\alpha =$$


$$\beta = \underline{\hspace{1cm}}$$



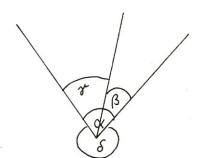
2. Gegeben ist das Dreieck ABC.



- a.) Miss die Winkel α und γ .
- b.) Konstruiere die Winkelhalbierende des Winkels β
- c.) Konstruiere die Mittelsenkrechte der Seite b.
- 3. Konstruiere den Schnittpunkt der beiden Winkelhalbierenden!

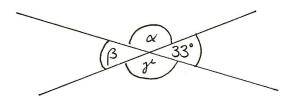
1a) Wie groß sind die Winkel?

b.)
$$\alpha = \langle \mathbb{B} AC \rangle$$

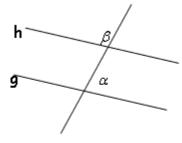

Schreibe die Winkel β und γ in derselben Form auf.

2. Berechne die fehlenden Winkel!

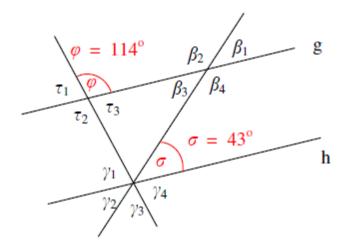
$$\alpha = 81^{\circ}$$


$$\beta = 25$$

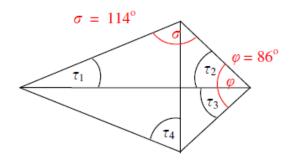
$$\delta = \underline{\hspace{1cm}}$$

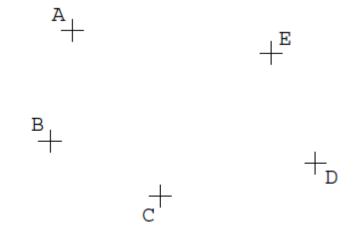

3. Berechne folgende Winkel:

$$\alpha =$$

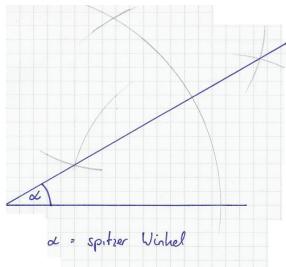


4. Was versteht man unter einem stumpfen Winkel?


5. In nebenstehender Figur ist $\alpha = 83^{\circ}$ und $\beta = 107^{\circ}$ Sind g und h parallel? Begründe.


1. Die Geraden g und h sind parallel ° Es gilt: $\phi = 114^\circ$ und $\sigma = 43^\circ$ Berechne alle weiteren in der Skizze gekennzeichneten Winkel. Gib jeweils eine kurze Begründung an!

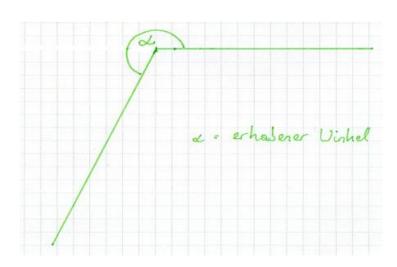
2. Berechne im abgebildeten Drachen die Winkel τ_1 bis τ_4 .


3. Verbinde die Punkte A, B, C, D, E zu einer geschlossenen Figur und miss in allen Punkten die Winkel ab!

4. Konstruiere das Rechteck mit den Eckpunkten A(3/2), B(9/2), C(9/5) und zeichne die Diagonalen ein. Wie groß sind die Winkel, die die Diagonalen miteinander einschließen? Die Einheitstrecke ist 1 cm.

1. Winkel:

a) Konstruiere folgenden Winkel und gib die Art des Winkels an: $\alpha = 30^{\circ}$



es ist ein spitzer Winkel

Um einen Winkel von 30° zu konstruieren, wird zuerst vom Scheitel aus ein Kreisbogen aufgetragen, von dessen Schnittpunkt mit dem Schenkel genau der Radius des Kreises am Kreisbogen abgeschlagen. Der so ermittelte 60°-Winkel muss noch halbiert werden, indem auf dem Kreisbogen von beiden Seiten der gleiche beliebig große Radius abgeschlagen wird.

a) Zeichne folgenden Winkel und gib die Art des Winkels an: α = 247° es ist ein überstumpfer Winkel

b)

- **2.** Gegeben ist der Winkel α = 65° 45′ 16″. Der Winkel β ist doppelt so groß wie α ; γ ist ein Viertel von α .
 - a) Wie groß sind β und γ ?

$$\beta = 2 \cdot \alpha = 130^{\circ} \ 90' \ 32'' = 131^{\circ} \ 30' \ 32''$$

$$\gamma = \frac{\alpha}{4}$$

$$\alpha = 65 \cdot 60 \cdot 60 + 45 \cdot 60 + 16 = 236716''$$

$$\gamma = \frac{236716}{4} = 59179$$
" = 16° 16' 19"

b) Ermittle die Summe der drei Winkel!

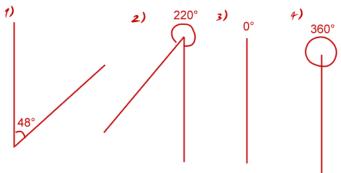
65°	45'	16"
131°	30'	32"
16°	16'	19"
212°	91'	67"
213°	32'	7"

- **3.** Umwandlungen:
 - a) Schreibe mehrnamig: 23,56° =

$$0.56^{\circ} = 0.56 \cdot 60 = 33.6'$$

 $0.6' = 0.6 \cdot 60 = 36''$
 $23.56^{\circ} = 23^{\circ} 33' 36''$

b) Verwandle in Grad: 42.732"


42732 : 60 = 712 12 Rest 712 : 60 = 11 52 Rest 42.732" = 11° 52' 12"

4. Berechne den Winkel α , wenn $\beta = 123.7^{\circ}$ und $\gamma = 100.5^{\circ}$.

. $123.7^{\circ} + 100.5^{\circ} = 224.2^{\circ}$ $360^{\circ} - 224.2^{\circ} = 135.8^{\circ}$ A: Der Winkel α ist 135.8° groß.

5a) Zeichne Winkel folgender Größen:

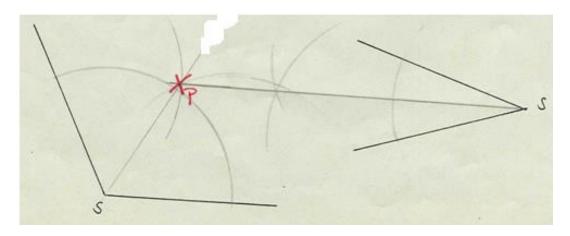
(1) $\alpha = 48^{\circ}$; (2) $\beta = 220^{\circ}$ (3) $\gamma = 0^{\circ}$ (4) $\delta = 360^{\circ}$

b) Miss die Größen folgender Winkel:

(1) 38,5 ° / 321,5° (2) 90° / 270° (3) 27° / 333° (4) 115° / 245°


6. Welchen Winkel schließen die Zeiger der Uhr ein? Welche Art von Winkel ist dargestellt?

 α = 120° β = 210° γ = 30° δ = 300° stumpfer Winkel, erhabener Winkel, spitzer Winkel. erhabener Winkel

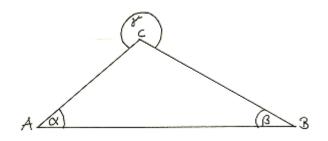

1. Berechne die Winkel α und β in der untenstehenden Skizze:

$$\alpha = 65^{\circ}$$
 $\beta = 180^{\circ} - 65^{\circ} = 115^{\circ}$

- 2. Gegeben ist das Dreieck ABC.
 - a.) $\alpha = 118^{\circ} // \gamma = 34^{\circ}$
 - b.) + c.)

3. Konstruiere den Schnittpunkt der beiden Winkelhalbierenden!

1a) Wie groß sind die Winkel?


$$\beta = 29^{\circ}$$

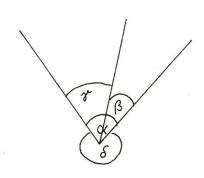
 $\gamma = ACB$

Hilfswinkel δ

$$\delta = 180^{\circ} - 40^{\circ} - 29^{\circ} = 111^{\circ}$$

Hilfswinkel
$$\delta$$

 $\delta = 180^{\circ} - 40^{\circ} - 29^{\circ} = 111^{\circ}$
 $\gamma = 360^{\circ} - \delta = 360^{\circ} - 111^{\circ} = 249^{\circ}$

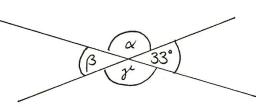

2. Berechne die fehlenden Winkel!

$$\alpha = 81^{\circ}$$

$$\beta = 25$$

$$\gamma = \alpha - \beta = 81^{\circ} - 25^{\circ} = 56^{\circ}$$

$$\delta = 360^{\circ} - \alpha = 360^{\circ} - 81^{\circ} = 279^{\circ}$$



3. Berechne folgende Winkel:

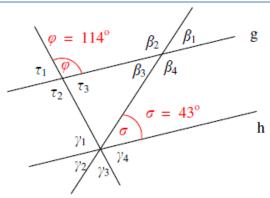
$$\alpha = 180^{\circ} - \beta = 180^{\circ} - 33^{\circ} = 147^{\circ}$$

$$\beta = 33^{\circ}$$

$$y = \alpha = 147^{\circ}$$

4. Was versteht man unter einem stumpfen Winkel? Der stumpfe Winkel ist ein Winkel der von >90° bis <180° gezeichnet werden kann. (siehe Station 1)

5. In nebenstehender Figur ist $\alpha = 83^{\circ}$ und $\beta = 107^{\circ}$ Sind g und h parallel? Begründe.


Die in der Aufgabenstellung gezeigten Geraden g und h sind nicht parallel, da die Winkel $\alpha = 83^{\circ}$ und $\beta = 107^{\circ}$ keine Wechselwinkel sind.

Wenn die beiden Winkel Wechselwinkel wären, dann würde ihre Summe 180 º ergeben. Dies ist aber nicht der Fall: 83° + 107° = 190°

Seite 9 www.Klassenarbeiten.de

1. Die Geraden g und h sind parallel.

Es gilt: $\phi = 114^{\circ}$ und $\sigma = 43^{\circ}$ Berechne alle weiteren in der Skizze gekennzeichneten Winkel. Gib jeweils eine kurze Begründung an!

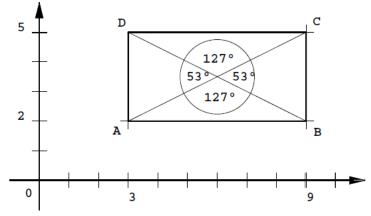

```
T_2 = \phi = 114^\circ (Scheitelwinkel) T_1 = 180^\circ - \phi = 180^\circ - 114^\circ = 66^\circ (Nebenwinkel) T_3 = T_1 = 66^\circ (Scheitelwinkel) T_3 = T_1 = 66^\circ (Scheitelwinkel) T_4 = T_3 = 66^\circ (Stufenwinkel) T_4 = T_3 = 66^\circ (Scheitelwinkel) T_4 = T_4 = 66^\circ (
```

2. Berechne im abgebildeten Drachen die Winkel T1 bis T4.

```
\begin{array}{l} \text{T}_3 = \text{T}_2 = \sigma: 2 = 86^\circ: 2 = 43^\circ \text{ (Symmetrie)} \\ \text{T}_1 + \text{T}_2 + \sigma = 180_\circ \text{ (Winkelsumme im <)} \\ \text{T}_1 = 180 - \tau_2 - \sigma = 180^\circ - 43^\circ - 114^\circ = 23^\circ \\ \text{T}_5 = \text{T}_1 = 23^\circ \text{ (Symmetrie)} \\ \text{Die Diagonalen im Drachen schneiden sich unter einem Winkel von } 90^\circ. \\ \text{T}_5 + \tau_4 + 90^\circ = 180^\circ \text{ (Winkelsumme im <)} \\ \text{T}_4 = 90^\circ - \tau_5 = 90^\circ - 23^\circ = 67^\circ \end{array}
```

3. Verbinde die Punkte A, B, C, D, E zu einer geschlossenen Figur und miss in allen Punkten die Winkel ab!

ankten die winkei ab!


A
95°

118°

B
142°

D

4. Konstruiere das Rechteck mit den Eckpunkten A(3/2), B(9/2), C(9/5) und zeichne die Diagonalen ein. Wie groß sind die Winkel, die die Diagonalen miteinander einschließen? Die Einheitstrecke ist 1 cm.

