3. Klassenarbeit in Mathematik Klasse 11 a/b

In der Arbeit sind keinerlei Hilfsmittel zugelassen.

Achte auf ordentliche Darstellung und saubere Dokumentation deiner Überlegungen.

Lösungen auf Konzept oder dem Aufgabenblatt werden nicht gewertet.

Name:

Viel Erfolg!

Nr. 1

Gegeben ist die Funktion f mit $f(x) = x^3 + 2x^2 - 7x + 4$.

- Begründe, warum das Schaubild von f weder Symmetrie zur y-Achse noch zum Ursprung besitzt.
- b) Untersuche die Funktion f auf ihr Verhalten für $x \to \pm \infty$.
- c) Welche Punkte haben das Schaubild von f und die Koordinatenachsen gemeinsam?
- d) Fertige zum Schaubild von f eine Skizze an.

Nr. 2

Gegeben sind die Funktionen f mit f(x) = 2x - 4 und g mit $g(x) = -x^3 + 9x + 2$.

- a) Bestimme die Schnittpunkte der Schaubilder von f und g.
- Fertige eine gemeinsame Skizze der beiden Schaubilder an.

Nr. 3

Gegeben ist die Funktion f mit $f(x) = \frac{2}{(x+1)^2}$.

- a) Bestimme die waagrechte und die senkrechte Asymptote des Schaubildes von f.
- Fertige zum Schaubild von f eine Skizze an.

Nr. 4

Gegeben ist die Funktion f mit $f(x) = \frac{x-3}{x-1}$.

- Weise nach, dass das Schaubild von f punktsymmetrisch bzgl. des Punktes Z(1/1) ist.
- b) In welchen Punkten schneidet das Schaubild von f die Koordinatenachsen?
- c) Bestimme die waagrechte und die senkrechte Asymptote des Schaubildes von f.
- d) Fertige zum Schaubild von f eine Skizze an.

freiwillige Zusatzaufgabe (gut für Extrapunkte)

Gegeben ist die Funktion f mit $f(x) = \frac{x-1}{x^3-1}$.

- a) Inwiefern gibt es ein Problem, wenn man diese Funktion auf Definitionslücken und Nullstellen untersucht?
- b) Untersuche das Verhalten von f für $x \rightarrow 1\pm 0$. Hinweis: Spalte zunächst im Nenner den Linearfaktor (x-1) per Polynomdivision ab.

Lösungsvorschlag

Aufgabe 1

$$f(x) = x^3 + 2x^2 - 7x + 4$$

a) Symmetrie

$$f(x) = f(-x) ?$$

$$f(-x) = (-x)^3 + 2(-x)^2 - 7(-x) + 4 = -x^3 + 2x^2 + 7x + 4 \neq f(x)$$

→ nicht symmetrisch zur y-Achse

$$f(x) = -f(-x) ?$$

$$-f(-x) = -((-x)^3 + 2(-x)^2 - 7(-x) + 4) = -(-x^3 + 2x^2 + 7x + 4) = x^3 - 2x^2 - 7x - 4 \neq f(x)$$

→ nicht symmetrisch zum Ursprung

b) Verhalten im Unendlichen

$$\lim_{x \to +\infty} \left(x^3 + 2x^2 - 7x + 4 \right) = \lim_{x \to +\infty} x^3 \cdot \left(1 + \frac{2}{x} - \frac{7}{x^2} + \frac{4}{x^3} \right) \xrightarrow{\longrightarrow} +\infty$$

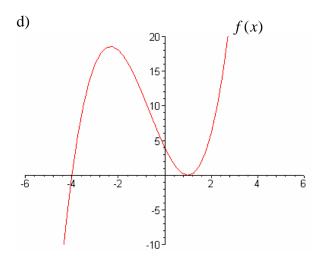
$$\lim_{x \to -\infty} \left(x^3 + 2x^2 - 7x + 4 \right) = \lim_{x \to -\infty} x^3 \cdot \left(1 + \frac{2}{x} - \frac{7}{x^2} + \frac{4}{x^3} \right) \xrightarrow{\infty} -\infty$$

c) Schnittpunkt mit der y-Achse: $S_y(0/4)$

Schnittpunkte mit der x-Achse: $0 = x^3 + 2x^2 - 7x + 4 \Rightarrow x_{01} = 1 \text{ (durch probieren)} \Rightarrow$

Polynomdivision $\rightarrow (x^3 + 2x^2 - 7x + 4) : (x - 1) = x^2 + 3x - 4 \rightarrow \underline{x_{02}} = 1$, $\underline{x_{03}} = -4$

 $S_{x_{01}}(1/0), S_{x_{02}}(-4/0)$

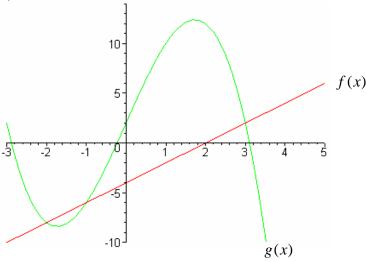


Aufgabe 2

$$f(x) = 2x - 4$$
 $g(x) = -x^3 + 9x + 2$

a) Schnittpunkte:
$$2x - 4 = -x^3 + 9x + 2 \Rightarrow 0 = x^3 - 7x - 6 \Rightarrow$$
 Polynomdivision \Rightarrow $\underline{x_{01} = -1}$ (durch probleren) $\Rightarrow (x^3 - 7x - 6) : (x + 1) = x^2 - x - 6 \Rightarrow \underline{x_{02} = 3}$, $\underline{x_{03} = -2}$

$$S_1(-1/-6)$$
 $S_2(3/2)$ $S_3(-2/-8)$



Aufgabe 3

$$f(x) = \frac{2}{\left(x+1\right)^2}$$

a) Polstelle: $x_P = -1$

von rechts:
$$\lim_{x \to -1} \left(\frac{2}{(x+1)^2} \right) = \lim_{n \to \infty} \left(\frac{2}{(-1 + \frac{1}{n} + 1)^2} \right) = \lim_{n \to \infty} \left(\frac{2}{\frac{1}{n^2}} \right) \to +\infty$$

von links:
$$\lim_{x \to -1} \left(\frac{2}{(x+1)^2} \right) = \lim_{n \to \infty} \left(\frac{2}{(-1 - \frac{1}{n} + 1)^2} \right) = \lim_{n \to \infty} \left(\frac{2}{\frac{1}{n^2}} \right) \to +\infty$$

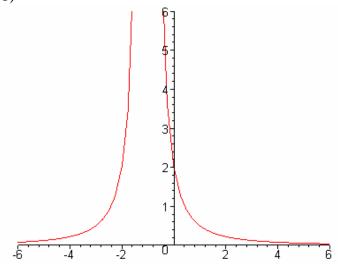
 \rightarrow senkrechte Asymptote bei $x_p = -1$

$$\lim_{x \to +\infty} \left(\frac{2}{(x+1)^2} \right) = \lim_{x \to +\infty} \left(\frac{2}{x^2 + 2x + 1} \right) = \lim_{x \to +\infty} \left(\frac{x^2 \cdot (\frac{2}{x^2})}{x^2 \cdot (1 + \frac{2}{x} + \frac{1}{x^2})} \right) = 0$$

$$\lim_{x \to -\infty} \left(\frac{2}{(x+1)^2} \right) = \lim_{x \to -\infty} \left(\frac{2}{x^2 + 2x + 1} \right) = \lim_{x \to -\infty} \left(\frac{x^2 \cdot (\frac{2}{x^2})}{x^2 \cdot (1 + \frac{2}{x} + \frac{1}{x^2})} \right) = 0$$

 \rightarrow waagerechte Asymptote bei y = 0

b)



Aufgabe 4

$$f(x) = \frac{x-3}{x-1}$$

a)
$$Z(a/b) = (1/1)$$

$$f(a-x) - b = -[f(a+x) - b] \Rightarrow \frac{a-x-3}{a-x-1} - b = -\left[\frac{a+x-3}{a+x-1} - b\right] \Rightarrow \frac{1-x-3}{1-x-1} - 1 = -\left[\frac{1+x-3}{1+x-1} - 1\right] \Rightarrow \frac{2+x}{x} - 1 = -\left[\frac{-2+x}{x} - 1\right] \Rightarrow \frac{2+x}{x} - 1 = \frac{2-x}{x} + 1 \Rightarrow \frac{2+x-x}{x} = \frac{2-x+x}{x} \Rightarrow \frac{2}{x} = \frac{2}{x}$$

b) Schnittpunkt mit der x-Achse: $0 = x - 3 \rightarrow \underline{S_x(3/0)}$ Schnittpunkt mit der y-Achse: $\underline{S_y(0/3)}$

c) Polstelle: $x_P = 1$

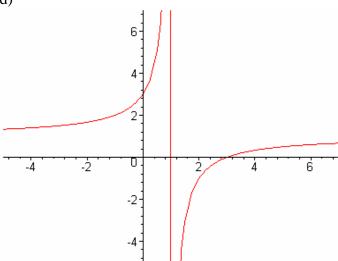
von rechts:
$$\lim_{x \to 1} \left(\frac{x-3}{x-1} \right) = \lim_{n \to \infty} \left(\frac{1+\frac{1}{n}-3}{1+\frac{1}{n}-1} \right) = \lim_{n \to \infty} \left(\frac{-2+\frac{1}{n}}{\frac{1}{n}} \right) \to -\infty$$

von links:
$$\lim_{x \to 1} \left(\frac{x-3}{x-1} \right) = \lim_{n \to \infty} \left(\frac{1 - \frac{1}{n} - 3}{1 - \frac{1}{n} - 1} \right) = \lim_{n \to \infty} \left(\frac{-2 - \frac{1}{n}}{-\frac{1}{n}} \right) \to +\infty$$

 \rightarrow senkrechte Asymptote bei $x_p = 1$

$$\lim_{x \to +\infty} \left(\frac{x-3}{x-1} \right) = \lim_{x \to +\infty} \left(\frac{x \cdot (1-\frac{3}{x})}{x \cdot (1-\frac{1}{x})} \right) = \lim_{x \to -\infty} \left(\frac{x-3}{x-1} \right) = \lim_{x \to -\infty} \left(\frac{x \cdot (1-\frac{3}{x})}{x \cdot (1-\frac{1}{x})} \right) = \lim_{x \to +\infty} \left(\frac{x \cdot (1-\frac{3}{x})}{x \cdot (1-\frac{1}{x})} \right) = \lim_{x \to +\infty} \left(\frac{x \cdot (1-\frac{3}{x})}{x \cdot (1-\frac{1}{x})} \right) = \lim_{x \to +\infty} \left(\frac{x \cdot (1-\frac{3}{x})}{x \cdot (1-\frac{1}{x})} \right) = \lim_{x \to +\infty} \left(\frac{x \cdot (1-\frac{3}{x})}{x \cdot (1-\frac{1}{x})} \right) = \lim_{x \to +\infty} \left(\frac{x \cdot (1-\frac{3}{x})}{x \cdot (1-\frac{1}{x})} \right) = \lim_{x \to +\infty} \left(\frac{x \cdot (1-\frac{3}{x})}{x \cdot (1-\frac{1}{x})} \right) = \lim_{x \to +\infty} \left(\frac{x \cdot (1-\frac{3}{x})}{x \cdot (1-\frac{1}{x})} \right) = \lim_{x \to +\infty} \left(\frac{x \cdot (1-\frac{3}{x})}{x \cdot (1-\frac{1}{x})} \right) = \lim_{x \to +\infty} \left(\frac{x \cdot (1-\frac{3}{x})}{x \cdot (1-\frac{1}{x})} \right) = \lim_{x \to +\infty} \left(\frac{x \cdot (1-\frac{3}{x})}{x \cdot (1-\frac{1}{x})} \right) = \lim_{x \to +\infty} \left(\frac{x \cdot (1-\frac{3}{x})}{x \cdot (1-\frac{1}{x})} \right) = \lim_{x \to +\infty} \left(\frac{x \cdot (1-\frac{3}{x})}{x \cdot (1-\frac{1}{x})} \right) = \lim_{x \to +\infty} \left(\frac{x \cdot (1-\frac{3}{x})}{x \cdot (1-\frac{1}{x})} \right) = \lim_{x \to +\infty} \left(\frac{x \cdot (1-\frac{3}{x})}{x \cdot (1-\frac{1}{x})} \right) = \lim_{x \to +\infty} \left(\frac{x \cdot (1-\frac{3}{x})}{x \cdot (1-\frac{1}{x})} \right) = \lim_{x \to +\infty} \left(\frac{x \cdot (1-\frac{3}{x})}{x \cdot (1-\frac{3}{x})} \right) = \lim_{x \to +\infty} \left(\frac{x \cdot (1-\frac{3}{x})}{x \cdot (1-\frac{3}{x})} \right) = \lim_{x \to +\infty} \left(\frac{x \cdot (1-\frac{3}{x})}{x \cdot (1-\frac{3}{x})} \right) = \lim_{x \to +\infty} \left(\frac{x \cdot (1-\frac{3}{x})}{x \cdot (1-\frac{3}{x})} \right) = \lim_{x \to +\infty} \left(\frac{x \cdot (1-\frac{3}{x})}{x \cdot (1-\frac{3}{x})} \right) = \lim_{x \to +\infty} \left(\frac{x \cdot (1-\frac{3}{x})}{x \cdot (1-\frac{3}{x})} \right) = \lim_{x \to +\infty} \left(\frac{x \cdot (1-\frac{3}{x})}{x \cdot (1-\frac{3}{x})} \right) = \lim_{x \to +\infty} \left(\frac{x \cdot (1-\frac{3}{x})}{x \cdot (1-\frac{3}{x})} \right) = \lim_{x \to +\infty} \left(\frac{x \cdot (1-\frac{3}{x})}{x \cdot (1-\frac{3}{x})} \right) = \lim_{x \to +\infty} \left(\frac{x \cdot (1-\frac{3}{x})}{x \cdot (1-\frac{3}{x})} \right) = \lim_{x \to +\infty} \left(\frac{x \cdot (1-\frac{3}{x})}{x \cdot (1-\frac{3}{x})} \right) = \lim_{x \to +\infty} \left(\frac{x \cdot (1-\frac{3}{x})}{x \cdot (1-\frac{3}{x})} \right) = \lim_{x \to +\infty} \left(\frac{x \cdot (1-\frac{3}{x})}{x \cdot (1-\frac{3}{x})} \right) = \lim_{x \to +\infty} \left(\frac{x \cdot (1-\frac{3}{x})}{x \cdot (1-\frac{3}{x})} \right) = \lim_{x \to +\infty} \left(\frac{x \cdot (1-\frac{3}{x})}{x \cdot (1-\frac{3}{x})} \right) = \lim_{x \to +\infty} \left(\frac{x \cdot (1-\frac{3}{x})}{x \cdot (1-\frac{3}{x})} \right) = \lim_{x \to +\infty} \left(\frac{x \cdot (1-\frac{3}{x})}{x \cdot (1-\frac{3}{x})} \right) = \lim_{x \to +\infty} \left(\frac{x \cdot (1-\frac{3}{x})}{x \cdot (1-\frac{3}{x})} \right) = \lim_{x \to +\infty} \left(\frac{x \cdot (1-\frac{3}{x})}{x \cdot (1-\frac{3}{x})} \right) = \lim_$$

d)



Zusatz

$$f(x) = \frac{x-1}{x^3 - 1}$$

a) Definitionslücke = Nullstelle der Funktion bei x = 1

b)

von rechts:

$$\lim_{x \to 1} \left(\frac{x-1}{x^3 - 1} \right) = \lim_{x \to 1} \left(\frac{(x-1) \cdot 1}{(x-1) \cdot (x^2 + x + 1)} \right) = \lim_{n \to \infty} \left(\frac{1}{(1 + \frac{1}{n})^2 + 1 + \frac{1}{n} + 1} \right) = \lim_{n \to \infty} \left(\frac{1}{\frac{1}{n^2} + \frac{3}{n} + 3} \right) = \frac{1}{\frac{3}{2}}$$

von links:

$$\lim_{x \to 1} \left(\frac{x-1}{x^3 - 1} \right) = \lim_{x \to 1} \left(\frac{(x-1) \cdot 1}{(x-1) \cdot (x^2 + x + 1)} \right) = \lim_{n \to \infty} \left(\frac{1}{(1 - \frac{1}{n})^2 + 1 - \frac{1}{n} + 1} \right) = \lim_{n \to \infty} \left(\frac{1}{\frac{1}{n^2} - \frac{3}{n} + 3} \right) = \frac{1}{\frac{3}{2}}$$